Multifunctional UV-NIR Dual Light-Responsive Soft Actuators from a Main-Chain Azobenzene Semi-Crystalline Poly(ester-amide) Doped with Polydopamine Nanoparticles
Early Access
DEC 2023
Indexed
2024-01-03
Document Type
Article; Early Access
Abstract
The development of soft photoactuators with multifunctionality and improved performance is highly important for their broad applications. Herein, we report on a facile and efficient strategy for fabricating such photoactuators with UV-NIR dual light-responsivity, room-temperature 3D shape reprogrammability and reprocessability, and photothermal healability by doping polydopamine (PDA) nanoparticles into a main-chain azobenzene semi-crystalline poly(ester-amide) (PEA). The PEA/PDA nanoparticle composite was readily processed into free-standing films with enhanced mechanical and photomechanical properties compared with the blank PEA films. Its physically crosslinked uniaxially oriented films showed rapid and highly reversible photochemically induced bending/unbending under the UV/visible light irradiation at room temperature in both the air atmosphere and water. When exposed to the NIR light, they (and their bilayer films formed with a polyimide film) exhibited photothermally induced bending even at a temperature much lower than their crystalline-to-isotropic phase transition temperature based on a unique mechanism (involving photothermally induced polymer chain relaxation due to the disruption of their hydrogen bonds). The room-temperature 3D shape reprogrammability and reprocessability and photothermal healability of the composite polymer films were also demonstrated. Such multifunctional dual light-responsive photoactuators with well-balanced mechanical robustness, actuation stability, 3D shape reprogrammability/reprocessability and photothermal healability hold much promise in various photoactuating applications.
Efficient development of multifunctional photoactuators with enhanced mechanical/photomechanical properties, UV-NIR dual light-responsivity, room-temperature three-dimensional (3D) shape reprogrammability and reprocessability, and photothermal healability by simply doping polydopamine (PDA) nanoparticles into main-chain azo semi-crystalline poly(ester-amide) (PEA) films is described. They are compatible with aqueous environment and exhibit photothermal deformation below the melting temperature based on a unique photothermally induced hydrogen bond-disruption mechanism.