功能高分子材料教育部重点实验室

近期发表论文
当前位置: 首页 > 科技创新 > 近期发表论文 > 正文

张会旗课题组 | ACS APPLIED MATERIALS & INTERFACES

发布人:    发布时间:2022/01/27   浏览次数:

Fully Room-Temperature Reprogrammable, Reprocessable, and Photomobile Soft Actuators from a High-Molecular-Weight Main-Chain Azobenzene Crystalline Poly(ester-amide)

By

Zhou, Y (Zhou, Yan) Wang, L (Wang, Lei) Ma, SK (Ma, Shengkui) Zhang, HQ (Zhang, Huiqi)

DOI

10.1021/acsami.1c18647

Abstract

Azobenzene (azo) polymer photoactuators with full room-temperature reprogrammability, reprocessability, and photo-mobility are highly desirable for large-scale applications, but their development remains a daunting challenge. Herein, a strategy is first presented for fabricating such advanced photoactuators from a high-molecular-weight main-chain azo crystalline poly(ester-amide) (PEA) prepared via Michael addition polymerization. This azo PEA can be readily processed into both physically cross-linked, uniaxially oriented fibers and films with high mechanical robustness and reversible photoinduced bending/unbending at room temperature. Importantly, the presence of both amide unit-induced hydrogen bonding and crystalline domains in such films and fibers endows them with dynamic, yet stable cross-linking points, which enable their easy reprogrammability under strain at room temperature into various three-dimensional (3D) shapes (e.g., film helicoid and spiral ribbon, fiber spring) capable of showing completely different shape-dependent photomobile modes. In particular, these reshaped photoactuators can maintain their accurate 3D shapes and highly reversible photoinduced motions even after being kept at 80 degrees C for 20 days or at 100 degrees C for 2 days. They can also be reprocessed and recycled from solution at room temperature. Such a multifunctional main-chain azo crystalline PEA can serve as a versatile platform for fabricating various photoactuators with desired 3D shapes and motion modes under mild ambient conditions.