Triple-pulse excitation: An efficient way for suppressing background signals and eliminating radio-frequency acoustic ringing in direct polarization NMR experiments
Wang, FF (Wang, Fenfen)
Ramakrishna, SK (Ramakrishna, Sanath K.)
Sun, PC (Sun, Pingchuan)
Fu, RQ (Fu, Riqiang)
, 2021,332, Article Number 107067
DOI
10.1016/j.jmr.2021.107067
Abstract
Direct polarization using a single pulse is the simplest excitation scheme in nuclear magnetic resonance (NMR) experiments, capable of quantifying various compositions in many materials applications. However, this single-pulse excitation generally gives rise to NMR spectra with a severely distorted baseline due to the background signals arising from probe components and/or due to the radio-frequency (RF) acoustic ringing, especially in low-gamma nuclei and wide-line NMR. In this work, a triple-pulse excitation scheme is proposed to simultaneously suppress the background signals and eliminate the RF acoustic ringing. The acoustic ringing is cancelled through subtraction in any two consecutive scans by alternating the receiver phase while keeping the phase of the pulse right before acquisition the same. While the triple-pulse scheme generates an additional flip-angle dependent scaling to the traditional single-pulse excitation profile in such a way that the scaling is one when the flip-angle is similar to 90 degrees but becomes almost zero when the flip-angle is very small. Therefore, the background signals arising from the materials outside the sample coil experiencing a very small fraction of the RF flip-angles can be effectively suppressed. Various samples containing H-1 and quadrupolar nuclei (O-17, Mg-25, and Na-23) have been used to demonstrate the effectiveness of this newly proposed triple-pulse excitation in terms of suppressing the background signals and eliminating the acoustic ringing effects. (C) 2021 Elsevier Inc. All rights reserved.